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Abstract A novel colorimetric and off–on fluorescent
chemosensor 2 was designed and synthesized, which showed
reversible and highly selective and sensitive recognition to-
ward Cr3+ over other examined metal ions in aqueous solu-
tion. Upon addition of Cr3+, the solution of chemosensor 2
resulted in a color change from colorless to obvious pink
color, these significant changes in color could be used for
naked-eye detection. Chemosensor 2 exhibited a stable re-
sponse for Cr3+ in the range 0–10 μM with a detection limit
of 1 ppm. Furthermore, fluorescence imaging experiments of
Cr3+ ions in living MGC803 cells demonstrated its value of
practical applications in biological systems.

Keywords Rhodamine B . Chemosensor . Cr3+ . Aqueous
solution . Cell imaging

Introduction

Selective detection of transition metal ions has been of great
interest because of their importance in biological and environ-
mental processes [1–4]. Among transition metal ions, trivalent
chromium(Cr3+) is an essential element in human nutrition
and plays an important role in the metabolism of carbohy-
drates, fats, proteins and nucleic acids as it can activate certain

enzymes and stabilize proteins and nucleic acids [5]. The
deficiency of Cr3+ would cause disturbances in the glucose
levels and lipid metabolism, and lead to a variety of disease
such as diabetes and cardiovascular disease [6]. On the other
hand, chromium is an environmental pollutant and its build-up
due to various industrial and agricultural activities is a matter
of concern. Therefore, developing artificial receptors with
high selectivity and sensitivity for chemical and biochemical
agents for the efficient detection of Cr3+ is especially impor-
tant for both the environment and human health.

In recent years, colorimetric and fluorimetric methods for
detection of Cr3+ are very popular due to its operational
simplicity, high selectivity, sensitivity, rapidity, low cost of
equipment and direct visual perception [7–10]. Rhodamine
spirolactam based chemosensors are especially attractive due
to their excellent spectroscopic properties of large molar ex-
tinction coefficient, high emission quantum yields and long
absorption and emission wavelength elongated to visible re-
gion [11–13]. As is well known, rhodamine derivatives with
spirolactam structure are nonfluorescent and colorless, upon
metal binding, their structures can undergo a change from the
spirolactam to an open ring amide, gives rise to a strong
fluorescence emission and a pink color [14]. Due to the
quenching effect of the paramagnetic Cr3+, fluorescent turn-
on reagents suitable for monitoring intracellular Cr3+ remain
underdeveloped. Only a few of fluorescent probes based on
rhodamine derivatives for Cr3+ have been reported [15–18].
Additionally, there are few literatures available reporting
rhodamine-based fluorescent turn-on sensors for Cr3+ either
in vitro or in vivo systems [19].

Herein, we reported a new rhodamine B-based chemo-
sensor(2) for Cr3+ detection in aqueous solution. As shown
in Scheme 1, chemosensor 2 was obtained by a simple two-
step reaction from rhodamine B. Chemosensor 2 exhibited
highly selectivity and sensitivity signal behavior toward Cr3+

over other common interfering metal ions and anions. Its
selectivity was excellent, and the detection limit was measured
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to be 1 ppm. Moreover, fluorescence imaging experiments of
Cr3+ ions in living MGC803 cells demonstrated its value of
practical applications in biological systems.

Experimental

Apparatus

Fluorescence spectra measurements were performed on a
HITACHI F-4500 fluorescence spectrophotometer, and the
excitation and emission wavelength band passes were both
set at 4.0 nm. Absorption spectra were measured on a Lambda
35. UV/VIS spectrometer, Perkin Elmer precisely. The melt-
ing points were determined by an X-4 microscopic melting
point apparatus with a digital thermometer (Shanghai, China).
The pHwasmeasured with aModel pHs-3Cmeter (Shanghai,
China). 1H and 13C NMR spectra were recorded using a
Bruker DTX-400 spectrometer. Samples were dissolved in
CDCl3 and placed in 5 mm NMR tubes. TMS was used as
internal reference. ESI mass spectra were carried out on an
HPLC Q-Tof HR-MS spectromerer (Waters Micromass) by
using methanol as mobile phase. IR spectra in KBr disks were
conducted using a PE-1710 instrument. Fluorescence images
experiments were carried out with a Nikon-80i inverted fluo-
rescence microscope.

Materials

All chemicals and reagents were used as received from com-
mercial sources without further purification. Solvents for
chemical synthesis and analysis were purified according to
standard procedures. Double distilled water was used through-
out the experiment. Chloride salts of metal ions (K+, Na+,
Ca2+, Mg2+, Ba2+, Zn2+, Fe2+, Mn2+, Pb2+, Cu2+, Co2+, Ni2+,
Cd2+, Cr3+, and Hg2+) and the nitrate salt of Ag+ ions were
used to evaluate the metal ion binding properties by synthe-
sized compounds. The metal ions were prepared as

10.00 mmol/l in water solution. The stoichiometry of each
compound and Cr3+ was determined by Job’s method from the
obtained absorption spectroscopic data. In the determination,
the sum of concentration of Cr3+ and each compoundwas kept
at 300 μM and the molar ratio of Cr3+ was changed from 0 to
1.0.

Synthesis

Compound 1 was synthesized by reported methods [20].
Compound 2 was synthesized by a similar way described in
a reported method [21]. The concrete way was described as
follows:

Thioglycolic acid (92 mg, 1 mmol), DCC (237 mg,
1 mmol), DMAP (10 mg, 0.06 mmol) were dissolved in
10 mL dry dichloromethane. After cooling to 0 °C in ice bath,
to the solution was added dropwise a solution of the com-
pound 1 (484 mg, 1 mmol) in 20 mL dichloromethane over
30 min. The resulting mixture was stirred for 24 h at room
temperature. The reaction mixture was then evaporated and
the crude product was purified by column chromatography
(silica gel, petroleum ether: ethyl acetate = 1:2, v/v). The yield
was 45.6 %. 1H NMR (400 MHz, CDCl3, ppm):

1.18(t, 12H, J=7.02 Hz), 1.97(t, 1H, J=8.72 Hz), 3.09(t,
4H, J=6.58 Hz), 3.34 (dd, 10H, J=7.08 Hz), 6.28 (dd, 2H,
J=3.78 Hz), 6.38(d, 2H, J=2.44 Hz), 6.44(d, 2H, J=8.84 Hz),
7.09(dd, 1H, J=2.84 Hz), 7.47(dd, 2H, J=8.6 Hz), 7.92(dd,
1H, J=2.88Hz). 13C NMR (100 MHz, CDCl3 ppm)δ 12.60,
28.35, 39.91, 40.62, 44.36, 65.55, 97.72, 104.79, 108.22,
122.83, 123.92, 128.49, 130.52, 132.81, 148.91, 153.29,
153.72, 169.55, 169.72. HR-MS: Calcd for [C32H38N4O3S]:
558.2665. Found: 559.2734 [M+H]+, M.p.: 155–157 °C.

Results and Analysis

Fluorescence and UV–vis studies were performed using a
10 μM solution of compound 2 in a CH3OH-H2O(2:8, v/v)

Scheme 1 Synthetic route of 2
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solution with appropriate amounts of metal ions. Compound 2
was colorless and found to be very stable in the above-
mentioned solution system for more than two weeks. The
absorption spectra of compound 2 in solutions did not show
any peaks above 450 nm indicating the ring-closed
spirolactone is predominant. In addition, a very weak fluores-
cence signal was observed at 580 nm (Fig. 1) upon excitation
at 520 nm, confirming the presence of ring-closed
spirolactone.

Fluorescence Spectral Responses of 2

As shown in Fig. 1, the solution of 2(10 μM) showed a very
weak fluorescence in the absence of metal ions. When 10 eq.
metal ions of Zn2+, Mg2+, Ca2+, Cd2+, Pb2+, Mn2+, Hg2+,

Ba2+, Ni2+, Fe2+, Fe3+, K+, Ag+, Co2+, Cu2+ and Na+ were
added, no obvious changes on fluorescence intensity and color
could be observed (Fig. 1). However, under the same condition
of Cr3+ (10 eq.) resulted in a remarkably enhancement of fluo-
rescence at 580 nm.Moreover, the competitive experiments also
confirmed that the background metal ions showed small inter-
ference with the detection of Cr3+ in CH3OH-H2O (2:8, v/v)
(Fig. S4). Also, it was investigated that the fluorescence re-
sponse of compound 2 toward Cr3+ in the presence response
of various coexistent anion such as Cl−, Br−, NO3−, SO4

2− and
ClO4

−. It is gratifying to note that all the tested anions have no
interference (Fig. 2).

In order to investigate the influence of the different acid
concentration on the spectra of compound 2 and find a suitable
pH span in which compound 2 can selectively detect Cr3+

Fig. 1 Fluorescence spectra of
2(10 μM)in CH3OH-H2O(2:8, v/
v) with the presence of 10 eq. of
various species (λex=520 nm,
slit=4 nm). Inset: fluorogenic
response of 2 (10 μM) in H2O to
Cr3+ (10 eq.), λex=520 nm

Fig. 2 Fluorescence intensity (at
580 nm) of 2(10 μM) upon the
addition of 10 eq. Cr3+ in the
presence of 100 μM background
negative ions in CH3OH-H2O (2/
8, v/v), λex=520 nm
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efficiently, the acid titration experiments were performed
(Fig. S5). The results showed that free compound 2 did not
have obvious absorption between pH 1.0 and 14.0, indicating
that the spirocyclic form of compound 2 was not sensitive to
pH changes in this range. However, the addition of Cr3+ led to
the fluorescence enhancement over a comparatively wide pH

range (4.0–8.0), which is attributed to opening of the rhoda-
mine ring. Consequently, 2 may be used to detect Cr3+ in a
comparatively wide pH.

To further investigate the binding stoichiometry of 2 and
Cr3+ ion, a fluorescence titration experiment was carried out.
An increase of fluorescence intensity of 2 could be observed

Fig. 3 Fluorescence spectra of 2
(100 μM)in CH3OH-H2O(2:8, v/
v) upon addition of different
amounts of Cr3+ ions. Inset:
Changes in the emission intensity
at 580 nm, λex=520 nm

Fig. 4 Absorption spectra of 2
(10 μM) in CH3OH-H2O(2/8, v/
v) with the presence of 10 eq. of
various species (10 eq. of Cr3+).
Insert shows the photo of 2 with
different metal ions in CH3OH-
H2O(2/8, v/v)
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with gradual addition of Cr3+ ion (Fig. 3). The increment
saturated after adding 2.0 equiv of Cr3+ (Fig. 3, inset), this
also indicating a 2:1 stoichiometry of the Cr3+ to 2 in the
complex.

UV–vis Spectral Responses of 2

As shown in Fig. 4. UV–vis spectrum of 2 (10 μM) exhibited
only very weak bands over 450 nm. Addition of 10 eq. Cr3+

Fig. 5 UV–vis absorption
spectra of Job’s plots of the
complexation between 2 and
Cr3+. Insert: Job’s plot for the
complex of 2 and Cr3+ at 562 nm.
Total concentration of [2]+[Cr3+]
was kept constant at 300 μM

Fig. 6 UV–vis absorption
spectra of 2 in CH3OH-H2O(2:8,
v/v) upon addition of different
amounts of Cr3+ ions. Inset:
Changes in the absorption
intensity at 562 nm
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into solution immediately resulted in a significant enhancement
of absorbance at about 562 nm simultaneously the color change
into red(Fig. 4. inset). This strongly suggested that compound 2
can serve as a “naked eye” probe and a high sensitivity for Cr3+.
Under the identical condition, no obvious response could be
observed upon the addition of other ions including Zn2+, Mg2+,
Ca2+, Cd2+, Pb2+, Mn2+, Hg2+, Ba2+, Ni2+, Fe2+, Fe3+, K+, Ag+,
Co2+, Cu2+ and Na+ (Fig. 4). The results demonstrated that
compound 2 was characteristic of high selectivity to toward
Cr3+ over other competitive metal ions.

To determine the stoichiometry of the chromium-ligand
complex, Job’s method for absorbance measurement was
applied [22]. A plot of [Cr3+]/{[Cr3+]+[2]} versus the
molarfraction of Cr3+ was provided in Fig. 5. The absorbance
reached a maximum when the ratio was about 0.667, indicat-
ing a 2:1 stoichiometry of the Cr3+ to 2 in the complex. The
ultraviolet titration experiment was also carried out to deter-
mine the stoichiometry of the chromium-ligand complex. As
shown in Fig. 6, upon addition of increasing concentrations of
Cr3+ ions to the solution, a new absorption band centered at

Fig. 7 Effect of the methanol
content on the fluorescence
intensity (at 580 nm) of 2 (10μM)
in the absence and presence of
Cr3+ (100 μM), λex=520 nm

Fig. 8 The fluorescence at
580 nm of compound 2 (10 μM)
as a function of the Cr3+

concentration, λex=520 nm
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562 nm appeared with increasing intensity, which can be
ascribed to the formation of the ring-opened amide form of 2
upon Cr3+ ions binding. The increment saturated after adding
2.0 equiv of Cr3+ (Fig. 6, inset), this also indicating a 2:1
stoichiometry of the Cr3+ to 2 in the complex. These results
were in accordance with the fluorescence titration experiment.

Effect of Media

The effect of methanol content on the fluorescent measure-
ment of Cr3+ was investigated and results were shown in

Fig. 7, it can be observed that the fluorescence signal reached
its maximum value at 20 % aqueous methanol. Hence, 20 %
aqueous methanol media was selected for the fluorimetric and
colorimetric method.

The Detection of Cr3+

Generally, one of the most important and useful application
for a fluorescent chemosensor is the detection of metal ions.
When the compound 2 was employed at 10 μM in a MeOH-
H2O solution (2/8, v/v), the fluorescent intensity of compound

Fig. 9 Effect of reaction time on
the fluorescence intensity (at
580 nm) of 2 (10 μM) in the
absence and presence of 10 eq.
Cr3+ in CH3OH-H2O (2/8, v/v),
λex=520 nm

Fig. 10 Fluorescence intensity of
2 (10 μM) to Cr3+ in CH3OH-
H2O (2/8, v/v) solution,
λex=520 nm
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2 was proportional to be 1.0 ppm(Fig. 10), establishing that 2
was capable of distinguishing safe and toxic levels of Cr3+ in
drinking water according to the China SA standard [23]
(Fig. 8).

The Time Dependence of the Response

As shown in Fig. 9, the time dependence of the response of 2
to Cr3+ ions was investigated. It can be seen that the fluores-
cence signal of the compound 2 with Cr3+ ion increased for a
few minutes, and leveled off as the time continues, while the
fluorescence intensity of blank solution (only 2, 10 μM)
showed almost unchanged at the same conditions. The fluo-
rescence intensity of 2 with Cr3+ reached its high value at
about 10 min, after which the fluorescence intensity remained
almost constant. There, a 10 min reaction time was selected in
subsequent experiments in order to make the metal ions che-
late with the sensors sufficiently.

Mechanism

As is well known, the reversibility is an important matter to
obtain an excellent chemical sensor. Thus, the OH−-adding
experiments were conducted to introduction of OH− into the
system containing 2 (10 μM) and Cr3+(100 μM). The exper-
iment showed that the introduction of OH−(2 eq. to Cr3+)
could immediately restore the fluorescence intensities of 2.
When Cr3+ was added to the system again, the fluorescence
intensity of 2 was enhance (Fig. 10). The above results also
further elicited that the spectral response of 2 to Cr3+ is likely
due to the chelation-induced ring opening of rhodamine
spirolactam. Considering the behaviors of absorption and

fluorescence spectra, the turn-on response of 2 may be
explained by the spirocycle open-close mechanism.

Bioimaging Applications of Compound 2 in MGC-803
Cells [24, 25]

To further assess the potential applications of the probe as Cr3+

probe in living cells, fluorescent imaging inside MGC-803
cells was monitored by fluorescence microscopy. Incubation
of MGC-803 cells with 10 μM of the probe 2 in CH3OH-H2O
(2/8, v/v) for about 30 min at 37 °C gave almost no intracel-
lular fluorescence. After washing with water two times,
40 μM of Cr3+ were then supplemented to the cells, and all
the reaction mixtures were incubated at 37 °C for another
30 min. After that, the fluorescence from the intracellular area
was observed (Fig. 7d), providing visual evidence of the probe
2 entering cells and information on the intracellular existence
of Cr3+. Furthermore, a bright-field transmission image of
cells treated with 2 and Cr3+ confirmed that the cells were
viable throughout the imaging experiments(Fig. 11a and c).
These preliminary experimental results demonstrated that 2
could be used for detecting Cr3+ in biological samples.

Conclusions

In conclusion, we synthesized and reported an easily available
fluorescent chemosensor 2 based on rhodamine B. The com-
pound 2 exhibited a strong fluorescence enhancement upon
addition of Cr3+ while showing almost no response to other
cations. In addition, the limit of detection for Cr3+ in CH3OH/

Fig. 11 Fluorescence images of
Cr3+ in MGC-803 cells with
10 μM solution of 2 in CH3OH-
H2O (2/8, v/v) for 30 min at
37 °C, Bright-field transmission
images (a, c) and fluorescence
images (b, d) of MGC-803 cells
incubated with 0 μM, 40 μM of
Cr3+ for 30 min, respectively
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H2O (2/8, v/v) was found to be 1 ppm. Furthermore, fluores-
cence imaging experiments of Cr3+ ions in living MGC803
cells demonstrated its value of practical applications in bio-
logical systems.
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